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EXECUTIVE SUMMARY

Despite being passive components, concrete structures represent a major capital investment in nuclear power
plants. However, some concrete components are critical for the safety and long-term operation of the re-
actors: the concrete containment building protects the reactors from external aggression. The concrete
biological shield (CBS) contains the radiation exiting the reactor to protect equipment and personnel. De-
pending on the design, the CBS also has a function for supporting the reactor’s systems. This function needs
to be ensured in-service and during accident scenarios. After several decades of use, the CBS is exposed to
high-energy irradiation over an extended operation time, exceeding the fluence level currently considered
detrimental for the concrete’s structural properties. Such conditions occur at different times depending on
the reactor’s operation and design. Nevertheless, from the perspective of subsequent licence application, it
is mandatory to assess the potential effects of prolonged irradiation on concrete.

Unlike steel components, concrete structures are built with local constituents (cement, sand, and coarse
aggregates) to avoid prohibitive transportation costs. Thus, concrete performance is determined by the toler-
ance or the susceptibility of its constituents against any aging mechanism. The tolerance against irradiation
of the CBSs may vary greatly among the 56 nuclear power plants and 93 nuclear power reactors that form
the current US light-water reactor fleet. Irradiation-induced degradation is mainly a result of amorphization-
induced expansions of the silicated minerals present in the aggregates. The neutron irradiation–induced ex-
pansion varies from one rock-forming mineral to another: well framework–structured silicates (e.g., quartz
and feldspars) exhibit higher swelling than chained (e.g., pyroxene) or isolated silicates (e.g., garnet). Sili-
cates make up nearly 90% of the Earth’s crust. Other common minerals present in construction aggregates
are carbonates found, for example, in limestone. Irradiated carbonates exhibit only very minor expansions.

Because the rates and amplitudes of radiation-induced expansion vary considerably among the aggregate-
forming minerals, the mismatch expansion can cause cracking in irradiated aggregates and thus a degra-
dation of mechanical properties. Additionally, the overall expansion of the aggregates creates important
mechanical energy storage in the cement paste. The stored energy dissipation occurs either by viscous
relaxation or cracking, the latter contributing to further loss of the concrete’s structural properties. The in-
teractions among the degradation mechanisms involved during concrete irradiation are quite complex, time
dependent, highly nonlinear, and highly dependent on the mineralogy of the concrete aggregates. For these
reasons, an effective modeling strategy must be implemented at the mineral scale. The Light Water Reactor
Sustainability (LWRS) program has been developing an integrated approach that combines advanced char-
acterization methods and fast-Fourier transform (FFT)–based nonlinear simulations. The Microstructure-
Oriented Scientific Analysis of Irradiated Concrete (MOSAIC) tool provides a rigorous approach to an-
alyzing concrete specimens. It employs physics-based models to account for the effects of irradiation,
temperature, damage, and creep, which are the primary factors in the degradation process.

The development and validation activities of MOSAIC-2D were documented in previous LWRS reports
and publications, including the following:

• Y. Li, A. Cheniour, Y. Le Pape, E. Tajuelo Rodriguez, Validation of 2D-MOSAIC Tool for Assessment
of Concrete Sensitivity to Aging-Induced Damage Using the Existing Concrete Properties Database,
ORNL/SPR-2021/1912, March 2021;

• Y. Li, Y. Le Pape, E. Tajuelo Rodriguez, C.E. Torrence, J. D. Arregui Mena, T. M. Rosseel, and M. Sir-
car. “Microstructural Characterization and Assessment of Mechanical Properties of Concrete Based
on Combined Elemental Analysis Techniques and Fast-Fourier Transform–Based Simulations.” Con-
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struction and Building Materials, 257, Oct 2020. ISSN 09500618. doi: 10.1016/j.conbuildmat.2020.119500.
https://linkinghub.elsevier.com/retrieve/pii/S0950061820315051.

• Christa E. Torrence, Alain B. Giorl, Yujie Li, Elena Tajuelo Rodriguez, Jose D. Arregui Mena,
Thomas M. Rosseel, Yann Le Pape. “MOSAIC: An Effective FFT-Based Numerical Method to As-
sess Aging Properties of Concrete.” Journal of Advanced Concrete Technology, 192, pp. 149–167,
Released February 27, 2021, Online ISSN 1347–3913, https://doi.org/10.3151/jact.19.149, https:
//www.jstage.jst.go.jp/article/jact/19/2/19_149/_article/-char/en

As detailed in the LWRS report ORNL/SPR-2021/1912, the validation of MOSAIC-2D is largely completed.
However, continued validation work will be performed through the collaborative activities of the European
Union project ACES to extend MOSAIC’s capabilities to other mechanisms including creep, alkali-silica
reaction, and delayed ettringite formation.

The development and validation of MOSAIC-3D must be pursued to overcome some of MOSAIC-2D’s
limitations. In the CBSs of LWRs, the stress state caused by radiation-induced volumetric expansion (RIVE)
is highly three-dimensional because of the fluence gradient. Thus, damage is mainly governed by structural
constraints caused by the biaxial compression loading near the reactor cavity. 2D simulations led to an
overly conservative loss of mechanical properties because of the premature percolation of damage-forming
fractures. Therefore, expanding MOSAIC capabilities to perform realistic and predictive 3D simulations is
necessary. The development and validation progress is as follows:

1. Implement 3D mechanical simulation capabilities. Task completed in FY20.

2. Develop a reconstruction methodology combining x-ray computed tomography (XCT) and 2D high-
resolution images to generate realistic concrete aggregates’ 3D microstructures. Task scheduled for
FY21.

3. Complete the reconstruction of high-resolution 3D concrete microstructures. Task scheduled for
FY22.

4. Complete validation of 3D-MOSAIC on irradiated concrete. Task tentatively scheduled for FY22.

This report documents the 3D microstructure generation using XCT. This process follows the following
steps:

1. A clustering algorithm is applied to XCT-based images to detect clusters of pixels with similar features
and separate the three phases: aggregates, cement paste, and pores/background.

2. The processed images are stacked to form a 3D simulation domain. A finite element method (FEM)-
based simulation environment, MOOSE, is used to separate the three phases into mesh blocks and
generate a grain structure using a Voronoi diagram.

3. The data obtained from the FE code are processed to assign minerals to the newly generated grains
inside the aggregate block. Interfaces between particles and between phases are added in MOSAIC,
and a full 3D phase map is produced.

A 3D simulation in MOSAIC of irradiated concrete using linear elasticity and RIVE, as well as creep models
using the 3D phase map, exemplifies the current level of achievement.

This methodology allows for the generation of a 3D concrete microstructures with good accuracy, which
is enabled by the optimization of several parameters used in the image processing step. The methodology
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is effective and incurs a relatively low computational cost for a 3D problem. The current limitations of the
proposed approach are related mainly to the 3D characterization’s reliance on high-energy x-ray and neutron
radiation. In this research, the level of contrast between the concrete constituents phases remains relatively
low, making the separation of the phases a rather difficult task. The next research milestone will focus on
improving the 3D characterization to produce a more realistic representation of the aggregates and their
forming minerals.
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1. INTRODUCTION

The safety and sustainability of nuclear power plants require rigorous assessment of potential irradiation-
induced damage in the structural components. The concrete biological shield (CBS) is subjected to neutron
and gamma radiation throughout its lifetime, which develops damage with the increasing irradiation dose
and can lead to failure. The Microstructure-Oriented Scientific Analysis of Irradiated Concrete (MOSAIC)
code was developed by the Light Water Reactors Sustainability (LWRS) program to model the mechanical
behavior of concrete under irradiation. MOSAIC has been used successfully and validated in 2D on pre-
viously irradiated concrete and aggregate samples ([1] and ORNL/SPR-2021/1912). In 2D, MOSAIC uses
realistic high-resolution (<≈ 50 µm) microstructures reconstructed from the outputs of a combination of var-
ied techniques—including x-ray diffraction, micro x-ray fluorescence (mXRF), and energy-dispersive x-ray
spectroscopy (EDXS) elemental maps collected from the surface of a sample. This combined experimental
and modeling strategy enables a significant improvement in the accuracy of the modeled domain, and it
incurs relatively low computational cost compared to traditional methods such as the finite element method
(FEM). However, the results of such simulations assume a uniform elongated microstructure along a sam-
ple’s height, which is not representative of the complex shape and composition of its various constituents.
More specifically, 2D representations lead to overly conservative estimates of the loss of engineering proper-
ties in degraded concrete. This results from the early percolation of damaged areas in the 2D microstructures.
In addition, MOSAIC-2D representation does not allow for modeling the complex 3D stress states that de-
velop in nuclear power plants’ concrete structures. For example, the highly irradiated belt line region of the
CBS in the vicinity of the reactor cavity is subjected to biaxial compression in the vertical and azimuthal
directions and traction in the radial direction. This specific 3D stress state is caused by the radiation-induced
volumetric expansion (RIVE) and the effects of structural restraints in the three directions.

To address these limitations, research activities were initiated in 2018 to develop 3D capabilities in MO-
SAIC (LWRS report: ORNL/SPR-2020/1676). The existing 2D constitutive models were extended to 3D,
and they have been successfully tested on randomly generated 3D domains. The remaining challenge is
obtaining realistic 3D concrete microstructures based on 3D characterization of concrete specimens. Al-
though varied techniques can be employed for surfaces by relying on optical, electron, or x-ray interactions,
the main difficulty with 3D characterization is the simultaneous need for deep penetration (on the order a
few centimeters in concrete) and high resolution. This constraint limits the options to high-energy radia-
tion techniques such as x-rays and neutrons. This work focuses on the possibility of using x-ray computed
tomography (XCT) data to create 3D MOSAIC-compatible phase maps of concrete.

XCT is a nondestructive characterization technique that measures the x-ray attenuation with matter at
different angles to produce a high-resolution, 3D-voxelized reconstruction of the internal structure of a
sample by distinguishing areas of different radiodensities. XCT outputs can be read as a series of 2D high-
resolution images that represent a specified slice in the sample. In this work, a hollow plain concrete cylinder
(d. 40 mm) fabricated for an NRC-sponsored research project on irradiated reinforced concrete was used as
a test specimen. This specimen was XCT scanned in 2019 for quality control before being shipped to the
irradiation test reactor.

The XCT-based sample layers consist of a series of gray scale images of the concrete. The images
reveal low contrast between aggregates and the hardened cement paste (HCP), which complicates phase
identification through simple segmentation methods such as the application of a threshold to the gray levels.
Additionally, the image quality and contrast limitations do not distinguish particles that form the aggregates.
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To address this problem, an artificial Voronoi grain structure was added in the aggregates phase. An image
processing methodology was developed to identify three main components in the images—aggregates, HCP,
and pores or background—and to generate a Voronoi structure in the aggregates. This report details the ap-
plication of various numerical tools to produce a realistic 3D phase map in MOSAIC based on the provided
XCT scan.
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2. XCT-BASED CONCRETE SAMPLE RECONSTRUCTION

2.1 Concrete specimen

The concrete specimen used in this study was fabricated for an NRC-sponsored research project on the
effects of irradiation on the bond strength of steel embedded in concrete. The concrete formulation strictly
follows the specifications from the Japan Concrete Aging Management Program (JCAMP). The concrete
specimen has the same phase composition as concrete Con-A described in the paper by Maruyama et al.
(2017) [2]: w/c = 0.5 using a high early strength cement (ρc = 3.14 g cm−3) (Taiheiyo Cement Corp.),
land sand, sandstone (ρs = 2.61 g cm−3) (Shizuoka Prefecture), and altered crushed tuff aggregate, namely
GA/F from Aichi prefecture. The mix design is as follows: cement, 366 kg m−3; water, 183 kg m−3; fine
aggregate/sand, 799 kg m−3; and coarse aggregates, 995 kg m−3. The aggregates were composed mostly
of quartz (92%) and feldspars (7%). Based on the composition data, the volume fraction of aggregates
and HCP are, respectively, ≈70%/30%. The average mineral grain size in the aggregates is 0.1 to 0.3 mm
according to [2]. All materials were sourced from Japan, and the specimens were prepared at The University
of Tennessee, Knoxville. The cylindrical hollow specimen has a 4 cm diameter and height. The cylindrical
hole at the center of the sample has a diameter of 8 mm. Of the set of fabricated specimens, A-D-8 was set
aside as a “cold” control specimen; it is considered in this research as a representative concrete specimen
for the 3D reconstruction.

2.2 XCT scans

An XCT scan of the concrete specimen was performed. The specimen was characterized using Oak Ridge
National Laboratory (ORNL) x-ray tomographer ZEISS Xradia 520 Versa. The experiment was conducted
at 140 kV with a magnification of ×0.4. The scan completed in about 2.5 hours. The scan generated a
reconstructed specimen in a TXM file format. Then, transverse slices of the reconstructed specimen were
obtained using the Python library DXchange, which can read a TXM file and convert it to a series of TIFF-
formatted images. The TIFF format retains high quality and is generally used for large or high-resolution
images. The initial image resolution in the slices was 1024 ×1004. 1,018 images were generated from the
reconstructed sample data. Each image shows a cross section of the hollow cylindrical specimen in addition
to the air background, as shown in Figure 1. This section documents the phase identification process used
for this specimen to separate aggregate, HCP, and void phases using a Python script. The same process was
applied for all the images used in this work. Note that this process can be used for other concrete samples
with proper adjustments of the parameters used in image processing.

2.3 Image Processing

Initial processing is necessary to facilitate the detection of aggregates within the concrete sample as a result
of the low contrast between aggregates and the HCP. In fact, Figure 2 shows that it is difficult to separate
aggregates from the HCP using a threshold method because their gray levels are similar. First, the Gaussian
blurring method in the Python library OpenCV is used, with the goal of reducing noise within aggregates
in the image. The kernel size for the Gaussian filter is 5 × 5. The original and resulting images are shown
in Figure 3.a and Figure 3.b. An automatic adjustment of contrast and brightness is then applied, and its
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Figure 1. Example XCT-based reconstructed concrete image.

result is shown in Figure 3.c. To determine the location of pixels associated with voids, a binary image is
generated based on a specified threshold, as demonstrated in Figure 3.d.

Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised learning al-
gorithm applied to detect clusters of samples in a dataset, as described by [3]. The algorithm begins by
randomly placing an arbitrary point P0 and detecting the density of samples around P0. For this purpose,
two DBSCAN parameters are necessary: (1) the minimum number of samples k (including P0) in the neigh-
borhood of P0 to consider it as a core point, and (2) the maximum distance ε between two samples to be
considered neighbors. The distance can be calculated as the Euclidean distance between two samples. Once
the algorithm stops detecting nearby samples, it considers the ensemble of detected samples including P0 as
a cluster; then it generates another point P1 and repeats the same process until no more remaining samples
can be assigned to a cluster. Boundary points around the cluster are assigned. If a sample does not belong to
any cluster at the end of the clustering process, then it is considered noise. Therefore, DBSCAN can be used
to segment data, and more specifically, images. Several other clustering and image segmentation algorithms
such as k-means and the watershed algorithm are available.

Because of the low contrast and the large difference between cluster or aggregates sizes, DBSCAN was
chosen for this work. In fact, it is easier for DBSCAN to separate clusters of different densities; therefore, it
is expected to perform well with concrete XCT images. Because the image resolution is high, the application
of a density-based clustering algorithm is computationally expensive. Thus, the resolution was reduced by
a factor of four in each direction to 256 × 251 before segmenting the image. It is theoretically possible
to apply DBSCAN to a 3D image; however, it is very difficult in practice because of the sharp increase in
computational time. DBSCAN was therefore applied to each 2D image separately using the same parameter
values through the free Python library scikit-learn. The distance parameter was set to 4.5, and the minimum
number of samples was set to 30. For visualization purposes, each cluster was assigned a color, and a gray
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Figure 2. Example gray scale histogram of an XCT-based image of Con-A.

color map was used, as shown in Figure 3.e. The figure shows that the algorithm is capable of detecting
large aggregates when using the chosen DBSCAN parameters. It also considers the hole in the middle of
the sample as a cluster, in addition to all the pores seen in black in Figure 3.d. To solve this issue, all
pixels associated with pores or voids in the image were assigned the value of the background pixel in the
segmented image.

The choice of the maximum distance parameter is motivated by the plot of the average distance between
each data point and its 30 nearest neighbors in ascending order, as shown in Figure 4 and as suggested in the
paper by [4]. The number of nearest neighbors k is a parameter selected through a trial and error process.
Figure 4 shows that an ε distance of 4.5 is within the “elbow” zone of the plot and reduces overfitting. This
process was repeated for a number of layers to ensure that values chosen for both ε and k produced fairly
consistent results.

The DBSCAN output produced clusters that in some cases did not have clearly defined boundaries, as
shown in Figure 3.e. Therefore, the last step separated aggregates from each other by applying dilation and
then erosion to the image. The kernel size for dilation and erosion is 3 × 3. Figure 3.f shows the final
image output obtained. Aggregates are shown in different gray levels, and the HCP is white. The void
and pore areas are slightly darker than the HCP. Note that the large pore on the left of Figure 3.d is of the
same color as the background in the final result. Additionally, the pore/void phase was assigned the same
color in all of the processed images for consistency. The phase identification process used in this report is
expected to perform better, with improved contrast between aggregates and the HCP. The result shown here
is nevertheless satisfactory, given the quality of the original image.
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Figure 3. Image processing steps.
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Figure 4. Average distance between each data point and its 30 nearest neighbors in ascending order.

3. IMPLEMENTATION OF A VORONOI STRUCTURE IN AGGREGATE PHASES

After the separation of the three main phases—aggregate, HCP, and pores/background—an artificial particle
Voronoi structure is implemented in the aggregate phase. The purpose of this step is to generate representa-
tive particles and interparticle interfaces (IPI) that separate particles of the same or different mineralogies.
In fact, it is not possible to separate particles within the aggregates for two reasons: (1) the contrast is gen-
erally low between particles, and (2) the aggregate particles in this concrete specimen are very small, which
requires a higher image resolution to detect. This section presents the computational tools used to create 3D
particles within the aggregate phase using a Voronoi diagram.

3.1 3D Mesh Generation

The Multiphysics Object-Oriented Simulation Environment (MOOSE) framework [5] can generate a 3D
grain structure using a Voronoi tesselation at a relatively low computational cost and was therefore used in
this work. Note that Python libraries that generate comparable structures exist; other methodologies can
be explored for this purpose, as well. Because MOOSE is a FEM-based code, a 3D mesh based on the
processed images is required to apply the Voronoi tessellation algorithm to the concrete stack of images.
The processed images were converted to gray scale images in Python, as shown in Figure 5a, and then
read by MOOSE using the ImageSubdomainGenerator tool. This tool allows for the conversion of each
generated cluster (from DBSCAN) in the image to an FE block based on its gray level, as shown in Figure
5b where each color corresponds to a separate mesh block. To generate the mesh, the element size was set
to the pixel size.

MOOSE can also read a stack of images to create a 3D mesh using the color-based generated blocks.
The RenameBlockGenerator tool is then used to merge all of the aggregate blocks into a single large block.

7



(a) Grayscale image (b) FE mesh blocks

Figure 5. FE block assignment based on gray level in the input image.

Both the HCP and void phases have a unique gray level throughout all of the processed images; therefore, a
single 3D block is automatically generated in MOOSE for each of the two phases. The XCT scan generated
1,018 images, from which 509 consecutive images—corresponding to half the concrete sample—were used
in this work. The chosen images range from the 201st to the 709th image of the XCT scan. The element
size in the vertical direction is calculated based on the height (2 cm) and the pixel size in the 2D images.
The numbers of elements in the x, y, and z directions are Nx = 251, Ny = 256, and Nz = 121, respectively.
Because Nz is smaller than the number of images (509), several images were stacked into a single (x-y)
element layer along the vertical (z) direction. The resulting 3D structure is shown in Figure 6, in which each
color corresponds to a unique block.

3.2 Grain Structure

The PolycrystalVoronoi tool in the UserObject block of a MOOSE input file allows for the generation
of a grain structure, where a Voronoi tessellation can be performed based on randomly placed seeds across
the computational domain. For simplicity, the grains were generated across the entire domain; however, the
grain data were extracted from the aggregate block only in postprocessing, and this was done for visual-
ization purposes only. Grains are stored in variables called order parameters, which are equal to 1 inside
the grain and equal to 0 outside the grain. A smooth interface can be applied for better solve convergence.
MOOSE can associate multiple grains to a single variable to eliminate the need for one variable per grain,
which significantly reduces the computational costs for problems with a large number of grains.

For the application described herein, one thousand grains were generated inside the 3D structure in
Figure 6. In practice, a significantly larger number of grains will be needed to represent the very fine

8



Figure 6. 3D mesh blocks (half concrete sample).

aggregate particles in Con-A, which is very computationally expensive. It is therefore recommended to
use smaller concrete samples if the application of interest requires the generation of very fine grains. For
the purpose of demonstrating the process of developing 3D phase maps for MOSAIC simulations, it is
sufficient to assume the particle size to be larger than the real average particle size in Con-A. For improved
visualization, the void and background phases are hidden in the following illustrations: Figure 7 shows the
3D grain structure in the aggregate block surrounded by the HCP block (Figure 7a) and separated from the
HCP block (Figure 7b). Note that the pores and void volumes seen in Figure 7a, as well as the aggregate
block in Figure 7b, smoothly transition from one element to another in the z-direction as a result of a fairly
consistent result of both the binary threshold and the DBSCAN outputs along the XCT-based layers of
images.

The DistributedRectilinearMeshGenerator mesh tool in MOOSE assigns a copy of a part of a
mesh to each processor instead of copying the entire mesh. In other words, the mesh is generated in parallel,
and the number of partitions created corresponds to the number of processor units used in the simulation.
Since MOOSE uses Message Passing Interface capabilities to run simulations in parallel, it is capable of
using multiple nodes to construct a mesh in parallel. This is very beneficial for 3D simulations with large
grain numbers, which typically require 25 order parameters or more—and thus much more memory usage.
This parallel capability is therefore used in this work. Additionally, memory usage is further reduced by
using the nemesis output type, which consists of multiple mesh partition files. The number of output files
also corresponds to the number of processors requested. The output files can be read easily as a single batch
in the visualization software ParaView [6]. For this work, 30 order parameters were requested to generate
1,000 grains using 72 processors distributed over 2 nodes. The final memory usage was approximately 164
GB. With an interfacial width slightly larger than a single element, only 15 variables were ultimately used
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(a) Cement paste and aggregate phases (b) Aggregate phase

Figure 7. Generation of a grain structure to represent aggregate particles in the concrete half-sample.

by the simulation. The choice of the thin interface width facilitates the generation of the one-pixel-width IPI
phase at a later step in MOSAIC.

Finally, the constructed 3D mesh is read and converted to a voxelized structure using the Resample To
Image filter in ParaView. A CSV data file is then exported from the voxelized structure. This file contains the
calculated values of each variable or order parameter in each generated voxel, as well as other information
such as the block ID and the element or voxel ID. In addition to the grain variables or order parameters, an
auxiliary variable Bnds is defined such that

Bnds =
∑

i

Gr2
i , (1)

where Gri is the order parameter corresponding to grain i, and Bnds is calculated using BndsCalcAux in
MOOSE in the 3D domain to determine the location of grain boundaries. Bnds is equal to 1 inside grains
and is less than 1 at grain boundaries.

3.3 Mineral Phase Assignment

As stated above, each variable is assigned several grains throughout the 3D structure, as shown in Figure 8.
First, the volume fraction occupied by each order parameter is evaluated to approximately match the com-
position of the Con-A aggregates ( 92% quartz, 3% microcline, 2% anorthite, and less than 1% for each of
chlorite, biotite, orthoclase, anorthoclase, and albite as mentioned in [2]). Then, a number of order parame-
ters is assigned a mineral such that the resulting volume fraction of the mineral is close to the experimental
phase composition. A specific phase is assigned if the block ID corresponds to the aggregate block and if
both the order parameters Gri and Bnds are higher than a set threshold (0.6 in this work). A voxel map of
each phase is then generated such that if the latter conditions are met, then a constant value different from
0 is weighted by Bnds to produce gradients around interfaces. Note that another possible method to reduce
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Figure 8. Example grains (red) attributed to a single order parameter in the aggregate phase.

the error in the volume fractions is to assign a phase to each grain—instead of each variable—by isolating
the grains in postprocessing.

For simplicity, the number of phases was reduced in this work. Chlorite is represented by clinochlore.
The average particle size in 3D is 0.54 mm (calculated by assuming spherical particles) and the aggregate
volume fraction is approximately 50%. A CSV file containing a 30976 × 251 matrix is generated for each
phase. The matrix contains the “mirrored” data to accommodate MOSAIC’s axis direction choices.

11



4. GENERATION OF 3D PHASE MAPS IN MOSAIC

4.1 Gradient-Based Particle Maps

In order to generate a compatible phase map in XML format, MOSAIC uses a gradient-based approach to
determine the location of each phase. The previously generated CSV files of different phases are imported
via a MOSAIC input script and converted to normalized weights. The gradient map of each phase is gen-
erated as shown in Figure 9, and the maximum gradient is used to generate a seed map for the watershed
algorithm implemented in the code. The watershed algorithm creates a particle map. In each particle, an
average composition is calculated based on the data in the imported CSV files. If the fraction of a given
phase is higher than a specified threshold, then the particle is assigned to the phase. MOSAIC then gener-
ates an initial phase map in XML format. In this phase map, the IPI and the interfacial transition zone (ITZ)
are grouped into a single “boundaries” group of voxels. Therefore, another MOSAIC script is necessary to
assign either the IPI or the ITZ identity to each boundary voxel.

Figure 9. Example hcp gradient map of a single layer of the 3D structure.

Using a second MOSAIC script, voxels separating a matrix phase from the rest of the phases in the
initial phase map are identified as ITZ. The matrix phase is set to HCP. The remaining boundary voxels
represent the IPI. The final volume fractions are listed in Table 1. Figure 10 shows 3 out of 121 layers of
the 3D structure using the minerals listed in Table 1, interfaces, HCP, and void. Note that the boundary
between HCP and pores/void is considered as ITZ for simplicity. However, it is possible to separate it from
the ITZ using a contour detection method in Python, which, for instance, can be applied to the binary images
obtained from the threshold image in Figure 3.f. The MOSAIC script generates a complete 3D phase map
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in XML format. The phase map can be used to model the mechanical behavior of the reconstructed concrete
sample in MOSAIC.

Figure 10. Three consecutive layers from the generated phase map: quartz (red), albite (orange),
biotite (yellow), anorthite (sky blue), microcline (green), clinochlore (royal blue), IPI (black), ITZ
(blue), hcp (light gray), and void (purple).

Table 1. Phase volume fractions

Phase Quartz Microcline Anorthite Albite Biotite Clinochlore IPI
Volume fraction [%] 76.85 3.76 3.38 <0.1 1.97 0.52 13.47

4.2 Example 3D Simulation in MOSAIC

The phase map is generated by stacking 121 2D layers, which creates a 2D domain of (Ny × Nz)×Nx. The
dimensions parameter of the phase map is manually changed to Nz × Ny × Nx to apply constitutive models
in 3D. To test the 3D phase map, a simple irradiated concrete model in MOSAIC is used. All six minerals
and the IPI are subjected to isotropic RIVE. For minerals, RIVE and elastic properties are taken directly
from the irradiated minerals, aggregate and concrete (IMAC) database [7]. The linear elasticity model
accounts for the anisotropy of minerals. The IPI’s Young’s modulus is 101.15 GPa, and its Poisson’s ratio
is 0.079, based on Voigt-Reuss bounds approximations in Con-A. The IPI’s RIVE model and parameters
are also determined using homogenization techniques based on the minerals’ volume fractions determined
experimentally and their respective RIVE models. The HCP Young’s modulus is 12 GPa, and its Poisson’s
ratio is 0.2 [8].

The ITZ’s Young’s modulus is set to 4.5 GPa with the same Poisson’s ratio as HCP. In both the ITZ and
HCP, a generalized Kelvin-Voigt model of linear viscoelasticity is used to model creep. The creep model
parameters are summarized in Table 2. A linear elasticity model is applied to the void phase, assuming a
small enough Young’s modulus to still allow for smooth convergence of the solve while not significantly
affecting the mechanical behavior of the sample. The void’s Young’s modulus is set to 0.1 GPa, and its
Poisson’s ratio is set to 0.2.

To reduce the computational cost of the simulation, the model does not include damage development
and propagation. The temperature is set to the average temperature (66.7◦C) in the Con-A specimen with
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Table 2. Linear viscoelasticity model parameters

Phase HCP ITZ
Creep modulus (GPa) 15 5
Creep viscosity (days) 0.1, 3 0.1, 3

the highest irradiation dose (PPT-E in [2]) and the flux is set to 4.2198 ×10−3 n/pm2/day. Free boundary
conditions are applied in all three directions. The linear and nonlinear mechanics solvers’ tolerances are
set to 2 × 10−4 and 1 × 10−3, respectively. The simulation domain shown in Figure 11 is extracted in
Visualization Toolkit (VTK) format, which is compatible with ParaView. The stress, total strain, and creep
strain fields are also extracted at each time step. Figure 12 shows the clipped 3D image of the simulation
domain in Figure 12a and the corresponding stress norm or magnitude in Figure 12b after approximately
nine days of irradiation.

Figure 11. MOSAIC VTK output of the 3D microstructure.

Figure 11 shows that the aggregate composition is mostly homogeneous, as a result of the dominant
quartz volume fraction shown in green (VTK-generated color). Other minerals are found in smaller pro-
portions, such as biotite in pink and microcline in blue. Figure 12 demonstrates the impact of the large
isotropic expansion of quartz under irradiation on other minerals present in the aggregates, and it shows
that the stress magnitude is the highest inside those minerals. The clipped 3D domains also reveal some
discontinuities in the aggregates or HCP phases along the vertical directions as a result of (among other
reasons) the processing of 2D images independently of each other, as described in Section 2.3. Although
such discontinuities create a certain error in the simulated mechanical behavior of the sample, the overall
result is rather good and satisfactory given the initial low contrast between phases in the reconstructed XCT
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images of the concrete sample.

Figure 13 shows both the total strain and the creep strain fields in the clipped 3D domain shown in
Figure 12a. Figure 13a shows that quartz particles have a higher total strain than other aggregate particles,
which is consistent with the stress field shown in Figure 12b. Figure 13b shows the creep strain in HCP and
ITZ phases. The creep strain is the highest at sharp interface regions between the HCP and aggregates.

The results of this 3D simulation are consistent with the chosen simplicity of the irradiated concrete
model. However, the presence of pores and voids phases should be treated carefully to avoid nonphysical
mechanical behavior in the 3D domain. In fact, Figure 13a shows that despite the artificial low void’s
Young’s modulus, the total strain is not negligible in this phase.
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(a) Clipped 3D domain.

(b) Stress magnitude.

Figure 12. Clipped 3D domain (a) and the corresponding stress magnitude (b) at nine days of irradi-
ation.
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(a) Total strain magnitude.

(b) Creep strain magnitude.

Figure 13. Total strain (a) and creep strain (b) in clipped 3D domain at nine days of irradiation.
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5. LIMITATIONS AND DISCUSSION

The processes of generating a 3D phase map and using it as a simulation domain involve multiple
numerical tools and methods, as detailed in this report. Limitations of this approach are therefore related
to different stages of these processes. This section summarizes these limitations and discusses potential
improvements to the proposed approach.

• Low contrast: Despite its powerful capability of reconstructing a 3D sample in a nondestructive way,
XCT has contrast limitations. When applied to concrete, it is difficult to separate the HCP from the
aggregates within the concrete, as a result of their comparable gray levels. Thus, a threshold-based
segmentation is quite difficult and would be time-consuming given the number of layers involved in
the scan (1,018 layers for the scan used in this work). The unassisted learning algorithm used in this
work (DBSCAN) performs well with optimized parameters and after artificially enhancing contrast in
the images. However, the overall result still needs improvements; discontinuities were observed along
the vertical direction of the 3D domain, as shown in Figure 12a. A possible alternative to DBSCAN
is a deep learning algorithm for image segmentation. In this case, manual segmentation of a number
of images would be required to train the algorithm to identify the different phases within the images.
This technique has been successfully applied to XCT scans with contrast issues, and it has shown
good evaluation accuracy [9]. Also, several neural network architectures for semantic segmentation,
such as U-Net and SegNet, are available [10, 11].

• Image quality: In addition to contrast issues, the low quality of the images does not allow for the
identification of separate minerals and particles within aggregates using the approach documented
herein. The aggregates that compose the concrete sample used in this work specifically comprise very
fine particles. Moreover, some particles show a brighter gray level within an aggregate block in the
images. To mitigate this issue, an artificial grain structure is used in this work to create particles within
aggregates. However, assisted learning algorithms could also be explored for this problem.

• Grain structure: The Voronoi partition used in this research is applied to the entire 3D domain,
including HCP and void phases, despite being needed in the aggregate phase only. It is in fact difficult
to restrict the grain sizes to the aggregate phase given its shape, which adds more computational
expense to the problem. The issue with this approach is more visible when the particle or grain size
is large and comparable to the aggregate size. In this case, the particle distribution over aggregates
is biased because the continuation of a grain is observed in other aggregate areas. Therefore, it is
recommended to use this technique for small grain sizes to reduce the bias.

• Aggregate composition: In this work, quartz has the largest volume fraction, and other minerals
have relatively small volume fractions. This presents a limitation on the accuracy of the aggregate
composition because the grains may not be small enough to represent a mineral with a small vol-
ume fraction. However, this issue is not expected to significantly affect the mechanical behavior of
the simulated concrete. Furthermore, in this work, each grain variable (or order parameter) used in
MOOSE to generate the grain structure represents a number of grains in the domain as shown in Fig-
ure 8. As previously mentioned, order parameters were used to assign a mineral, instead of individual
grains. Another option is to separate individual grains in postprocessing to assign minerals for better
composition accuracy.

• Background and void regions: The background and void regions in the XCT images are combined
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into a single phase in this work. This choice is related to the nature of these regions (mostly air).
However, their presence in the simulation domain is a limitation because it requires the use of a
constitutive model in this phase to maintain the continuity of the mechanical model in the domain.
Linear elasticity is employed in regions with artificial elastic properties. The choice of these properties
necessitates special care to avoid nonphysical behaviors in the simulation.

• Computational cost: The entire process required to generate the MOSAIC-compatible 3D phase
map incurred a relatively low computational cost, as a result of the initial decrease in image resolu-
tion. For instance, the image processing part uses a few seconds for each image. The grain structure
generation uses approximately four hours with the previously discussed resources and mesh distri-
bution techniques. The gradient-based particle map generation is done within a few minutes. The
MOSAIC script that creates ITZ and IPI regions runs in approximately 1.5 to 2 hours. Moreover,
the 3D simulation in MOSAIC resulted in 18 time steps (in logarithmic increments) corresponding to
approximately 9 days of irradiation in less than 24 hours in wall time using a single core on a 64GB
RAM workstation. Two main processing and postprocessing Python scripts are used in this approach:
image processing and phase assignment. However, it is important to note that only 1,000 3D grains
were generated in this example, which resulted in a relatively large average grain size. As the number
of grains increases, the average grain size is reduced, and consequently, the computational cost is
expected to go up for certain steps of this process. For instance, to generate more grains in MOOSE,
more variables may be needed, which increases the memory cost.
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6. CONCLUSION

Following the successful development, application, and validation of the FFT-based code MOSAIC
using realistic 2D concrete microstructures, a new approach to construct 3D microstructures based on XCT
data is presented in this report. XCT provides information on a specimen in a nondestructive manner based
on the different radiodensities of its constituents. This enables the generation of a series of 2D gray scale
images representing the layers of the specimen along the scanned volume. An XCT scan of a hollow cylinder
concrete specimen was performed, and 1,018 layers of the specimen were obtained. Each image or layer
has a resolution of 1008 × 1024 pixels. In this work, several image processing techniques were used to
process the images and identify the specimen’s constituents to produce a realistic 3D simulation domain
for concrete. However, the phase identification process is not trivial because of the low contrast between
aggregates and the HCP. Additionally, it is difficult to separate minerals within the aggregates because of
the low contrast and low image quality. Therefore, several image processing methods are employed to help
to address these issues.

The report describes three major steps:

1. A clustering algorithm is applied to the processed images to detect clusters of pixels with similar
features and separate the three phases (HCP, aggregates, and pores).

2. The processed images are stacked to form a 3D simulation domain. An FEM-based simulation en-
vironment,MOOSE, is used to separate the three phases into mesh blocks and to generate a grain
structure using a Voronoi diagram.

3. The data obtained from the FEM code are processed to assign minerals to the newly generated grains
inside the aggregate block. Interfaces between particles and between phases are added in MOSAIC,
and a full 3D phase map is produced.

An example 3D simulation in MOSAIC of irradiated concrete using linear elasticity, RIVE, and creep mod-
els is presented using the 3D phase map.

Although the phase identification methodology shows good results despite the contrast issue, other meth-
ods such as an assisted learning segmentation algorithms can improve the quality of the 3D microstructure.
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